FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Tapwave, Inc.

Handheld

Model: Zodiac

Trade Name: Tapwave

Prepared for

Tapwave, Inc.
1901 Landings Drive, Building G Mountain View,
CA 94043

Prepared by

Compliance Certification Services Inc.
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang,
Taoyuan Hsien, (338) Taiwan, R.O.C.

TEL: 886-3-324-0332 FAX: 886-3-324-5235

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1. TE	CST RESULT CERTIFICATION	3
2. EU	JT DESCRIPTION	4
3. TE	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	
3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	
3.5	DESCRIPTION OF TEST MODES	
4. IN	STRUMENT CALIBRATION	7
5. FA	ACILITIES AND ACCREDITATIONS	8
5.1	FACILITIES	8
5.2	EQUIPMENT	
5.3	LABORATORY ACCREDITATIONS AND LISTING	8
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	9
6. SE	TUP OF EQUIPMENT UNDER TEST	10
6.1	SUPPORT EQUIPMENT	10
7. FC	CC PART 15.247 REQUIREMENTS	11
7.1	PEAK POWER	11
7.2	BAND EDGES MEASUREMENT	
7.3	PEAK POWER SPECTRAL DENSITY	17
7.4	FREQUENCY SEPARATION	20
7.5	NUMBER OF HOPPING FREQUENCY	22
7.6	TIME OF OCCUPANCY (DWELL TIME)	
7.7	RADIO FREQUENCY EXPOSURE	28
7.8	RADIATED EMISSIONS	29
7.9	POWERLINE CONDUCTED EMISSIONS	41

Report No: B30811204-RP FCC ID: REI001 Date of Issue: August 22, 2003

1. TEST RESULT CERTIFICATION

Applicant: Tapwave Computer Inc.

1901 Landings Drive, Building G Mountain View, CA 94043

Equipment Under Test: Handheld

Trade Name: Tapwave

Model: Zodiac

Report Number: B30611204-RP

Date of Test: August 18 - 19, 2003

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC Part 15 Subpart C	No non-compliance noted				

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4 (1992) and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.247.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Jonson Lee

Director of Linkou Laboratory

Compliance Certification Services Inc.

Reviewed by:

Eric Wong

Section Manager

Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Handheld
Trade Name	Tapwave
Model Number	Zodiac
Model Discrepancy	N/A
Power Supply	Input: Vac 100~120V, 50-60 Hz; 0.3A Output: Vdc 15V, 1.1A
Frequency Range	2402 – 2480MHz
Modulation Technique	Frequency Hopping Spread Spectrum (FHSS)
Number of Channels	79
Antenna Designation	PIFA Antenna

Note: This submittal(s) (test report) is intended for FCC ID: <u>REI001</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules. The composite system (digital device) is compliance with Subpart B is authorized under a DoC procedure.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4. Radiated testing was performed at an antenna to EUT distance 3 meters.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.247 under the FCC Rules Part 15 Subpart C. The composite system (Digital device) is compliance with the Subpart B is authorized under the DoC procedure.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4-1992. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4-1992.

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$\binom{2}{}$
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (Handheld) has been tested under operating condition.

EUT staying in continuous transmitting mode is programmed. Channel Low, Mid and High for each type and band with rated data rate are chosen for the final testing.

The field strength of spurious radiation emission was measured in the following position: EUT stand-up position (X mode), lie down position (Y, Z mode) and the position which the EUT is put onto the "HotSync" cradle. The following data show only with the worst case setup (the position which the EUT is put onto the "HotSync" cradle).

² Above 38.6

Report No: B30811204-RP FCC ID: REI001 Date of Issue: August 22, 2003

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.
☐ No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

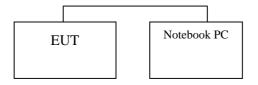
Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (registration no: 93105 and 90471).


5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS 3548IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1, EN 300 328-2, EN 300 220-1, EN 300 220-2, EN 300 220-3, 47 CFR FCC Part 15 Subpart C, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 14115, CNS 13438, AS/NZS 3548, CNS 13022-1, IEC 1000-4-3/4/5/6/8/11, CNS 13022-2/3	0 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canadä IC 3991-3 IC 3991-4

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SUPPORT EQUIPMENT

Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
Notebook PC	COMPAQ	Presario 1500	AN0DS1WLIV	1V31LDLZ20PG	Unshielded, 1.8m	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m

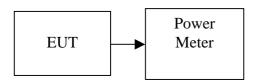
- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 15.247 REQUIREMENTS

7.1 PEAK POWER

LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:


- 1. For systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 watt.
- 2. Except as shown in paragraphs (b)(3) (i), (ii) and (iii) of this section, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
RF Power Meter	BOONTON	4531	130601	01/09/2004
RF Power Sensor	BOONTON	56218	2240	01/09/2004
Low Loss Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the RF Power Meter. The RF Power Meter is set to the peak power detection.

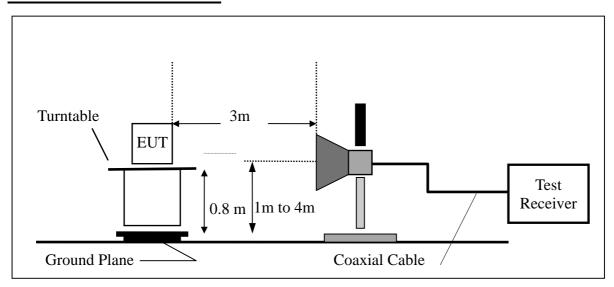
TEST RESULTS

No non-compliance noted

Test Data

Channel	Reading Power (dBm)	Cable Loss (dB)	Output Power (dBm)	Output Power (W)	Limit (W)	Result
Low	-2.50	1.50	-1.00	0.000794		PASS
Mid	-3.25	1.50	-1.75	0.000668	1.00	PASS
High	-4.37	1.50	-2.87	0.000516		PASS

7.2 BAND EDGES MEASUREMENT


LIMIT

According to §15.247(c), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in15.209(a).

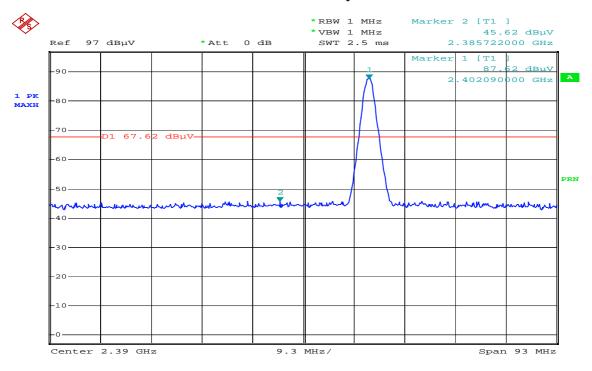
MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/27/2004
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2004
Low Loss Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

TEST CONFIGURATION

TEST PROCEDURE

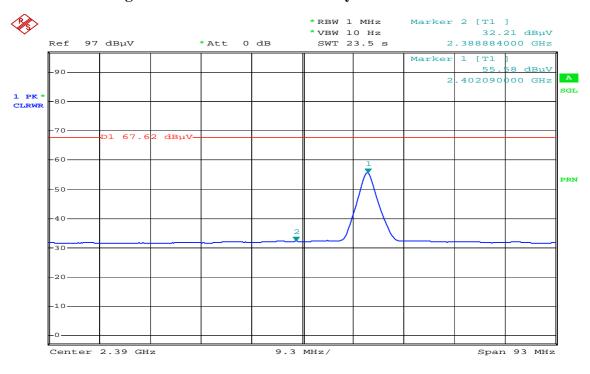
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.


TEST RESULTS

Refer to attach spectrum analyzer data chart.

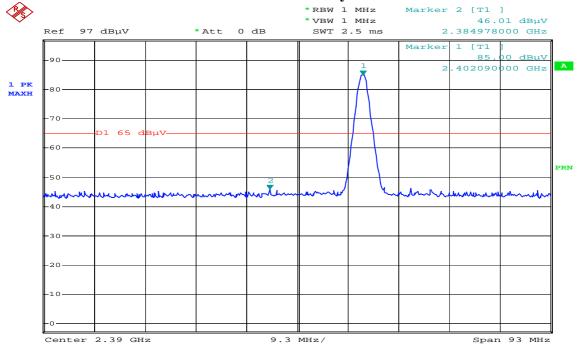
Band Edges Test Data (CH-Low)

Detector mode: Peak


Polarity: Vertical

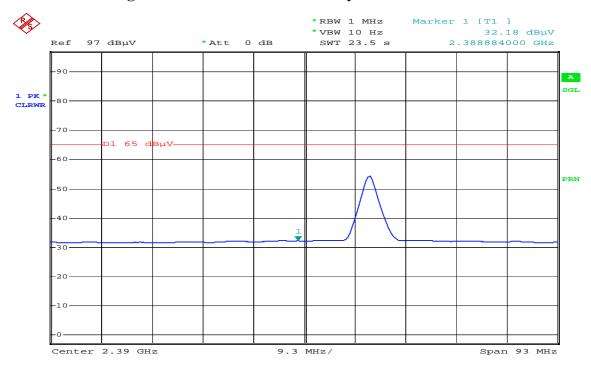
Date: 19.AUG.2003 05:44:17

Detector mode: Average


Polarity: Vertical

Date: 19.AUG.2003 05:46:41

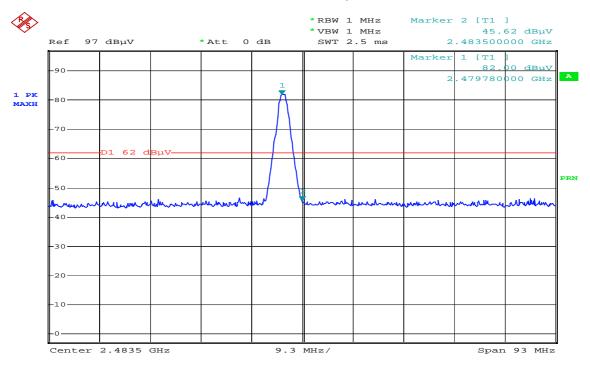
Detector mode: Peak


Polarity: Horizontal

Date: 19.AUG.2003 05:38:57

Detector mode: Average

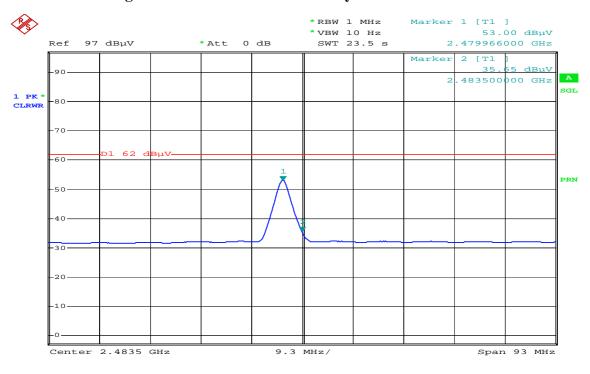
Polarity: Horizontal



Date: 19.AUG.2003 05:40:08

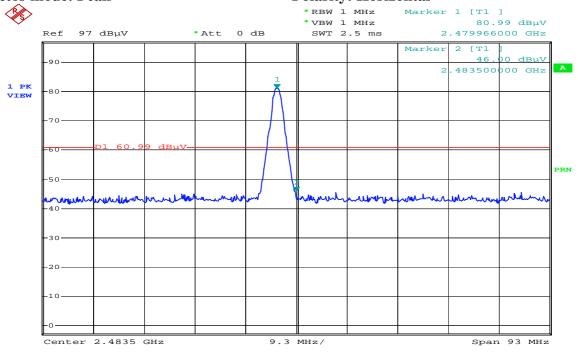
Band Edges Test Data (CH-High)

Detector mode: Peak


Polarity: Vertical

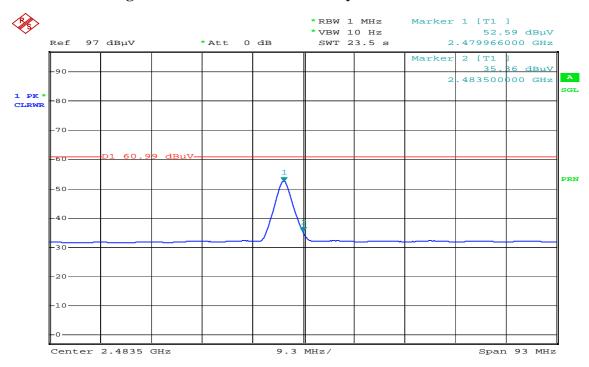
Date: 19.AUG.2003 05:52:48

Detector mode: Average


Polarity: Vertical

Date: 19.AUG.2003 05:54:42

Detector mode: Peak


Polarity: Horizontal

Date: 19.AUG.2003 05:57:44

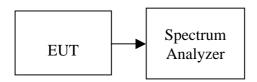
Detector mode: Average

Polarity: Horizontal

Date: 19.AUG.2003 05:59:36

7.3 PEAK POWER SPECTRAL DENSITY

LIMIT


- 1. For direct sequence systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band during any time interval of continuous transmission.
- 2. The direct sequence operating of the hybrid system, with the frequency hopping operation turned off, shall comply with the power density requirements of paragraph (d) of this section.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004
Spectrum Analyzer	R&S	FSP30	1093.4495.30	07/22/2004
Low-loss Cable	Huber + Suhner	Sucoflex 104	N/A	N/A

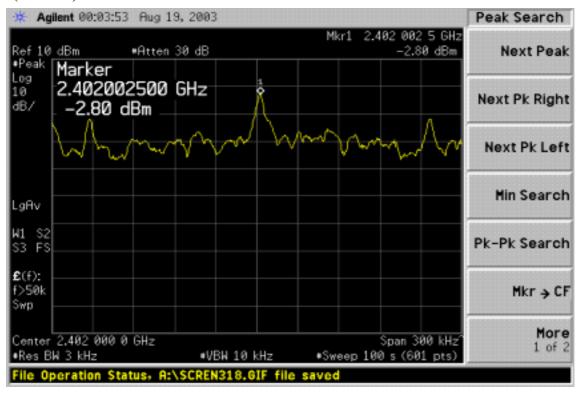
Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

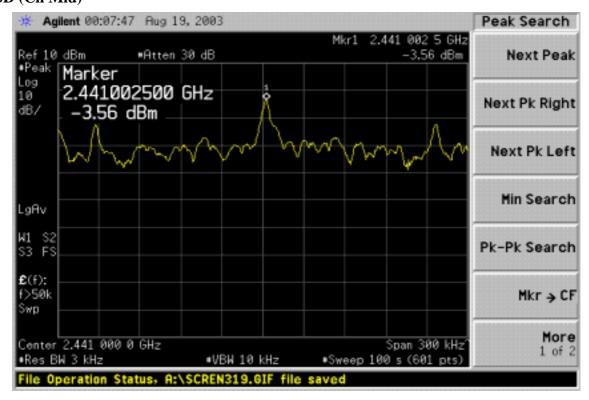
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 3kHz, VBW = 10kHz, Span = 300kHz, Sweep=100s
- 4. Record the max. reading.
- 5. Repeat the above procedure until the measurements for all frequencies are completed.

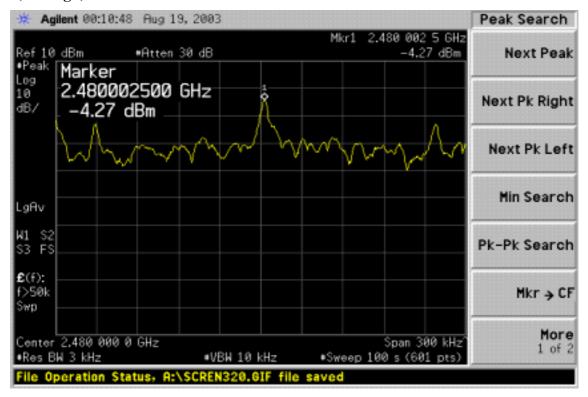
TEST RESULTS


No non-compliance noted

Test Data


Channel	Reading (dBm)	Cable Loss dB	PPSD dBm	Limit dBm	Result
Low	-2.80	1.50	-1.30		PASS
M id	-3.56	1.50	-2.06	8.00	PASS
High	-4.27	1.50	-2.77		PASS

Test Plot

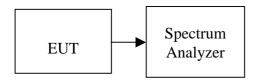

PPSD (Ch Low)

PPSD (Ch Mid)

PPSD (Ch High)

7.4 FREQUENCY SEPARATION

LIMIT


According to §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

MEASUREMENT EQUIPMENT USED

Name of Equipment	me of Equipment Manufacturer		Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004	
Spectrum Analyzer	Spectrum Analyzer R&S		1093.4495.30	07/22/2004	
Low-loss Cable Huber + Suhner		Sucoflex 104	N/A	N/A	

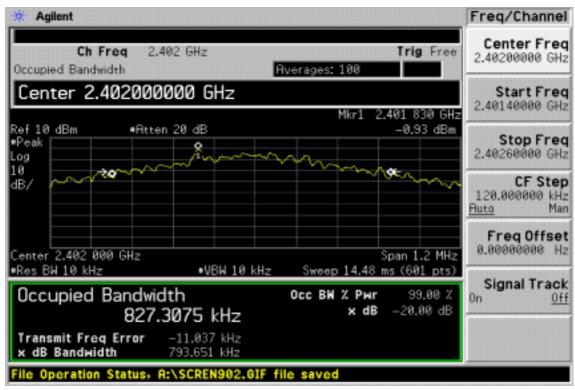
Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

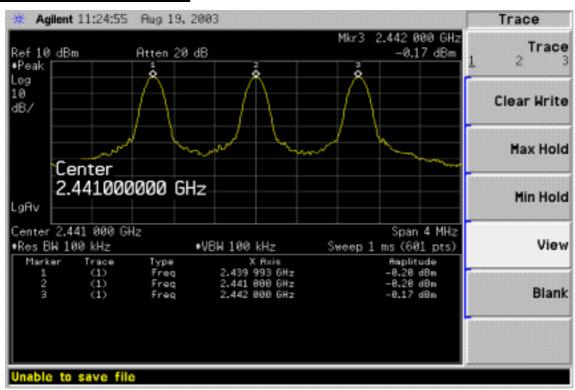
TEST PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = middle of hopping channel.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz, Adjust Span to 4.0 MHz, Sweep = auto.
- 5. Max hold. Mark 3 Peaks of hopping channel and record the 3 peaks frequency.

TEST RESULTS


No non-compliance noted

Test Data


Channel Separation (MHz)	20dB BW* (kHz)	Limit (kHz)	Result
1.00	793.65	>25	Pass

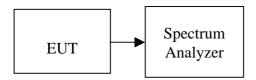
^{*}Note: shows only one of the greatest bandwidth recorded among all 3 channels.

Test plot (Measurement of 20dB bandwidth)

Test plot (Frequency separation)

7.5 NUMBER OF HOPPING FREQUENCY

LIMIT


According to §15.247(a)(1)(ii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands shall use at least 75 hopping frequencies.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Equipment Manufacturer		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	US42510252	04/28/2004
Spectrum Analyzer	Spectrum Analyzer R&S		1093.4495.30	07/22/2004
Low-loss Cable Huber + Suhner		Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

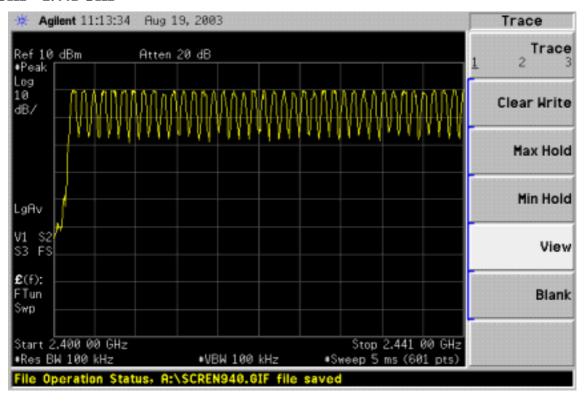
Test Configuration

TEST PROCEDURE

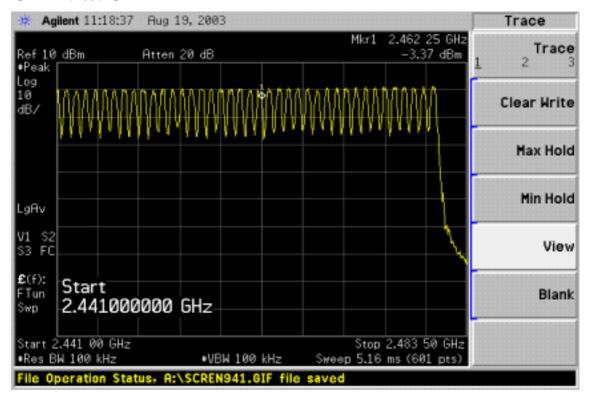
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set spectrum analyzer Start=2400MHz, Stop = 2483.5MHz, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz,
- 5. Max hold, view and count how many channel in the band.

TEST RESULTS

No non-compliance noted


Test Data

Result (No. of CH)	Limit (No. of CH)	Result	
79	75	PASS	


Test Plot

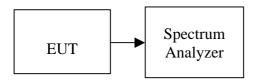
Channel Number

2.4 GHz - 2.441 GHz

2.441 GHz - 2.4835 GHz

7.6 TIME OF OCCUPANCY (DWELL TIME)

LIMIT


According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400MHz-2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

MEASUREMENT EQUIPMENT USED

Name of Equipment	nme of Equipment Manufacturer		Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A US42510252		04/28/2004
Spectrum Analyzer	Spectrum Analyzer R&S		1093.4495.30	07/22/2004
Low-loss Cable Huber + Suhner		Sucoflex 104	N/A	N/A

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

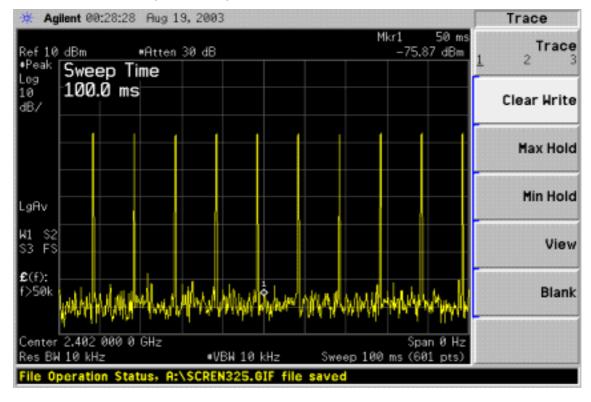
TEST PROCEDURE

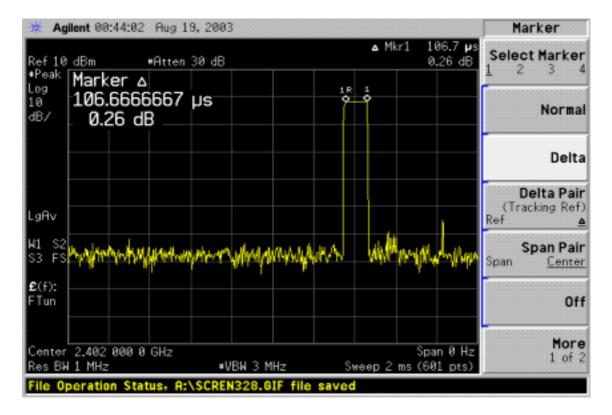
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=10kHz, Span = 0Hz, Adjust Sweep = 100ms / RBW= 1MHz, VBW=3MHz, Span = 0Hz, Adjust Sweep = 2ms.
- 5. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

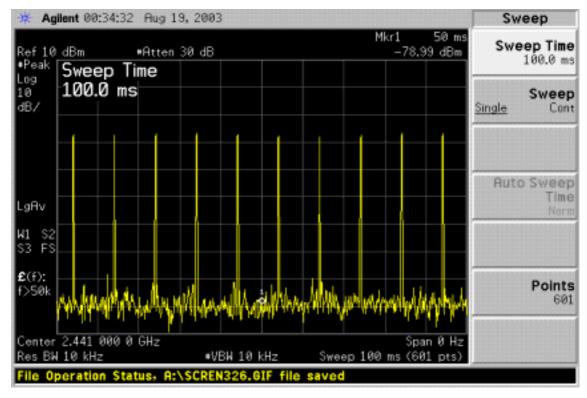
No non-compliance noted

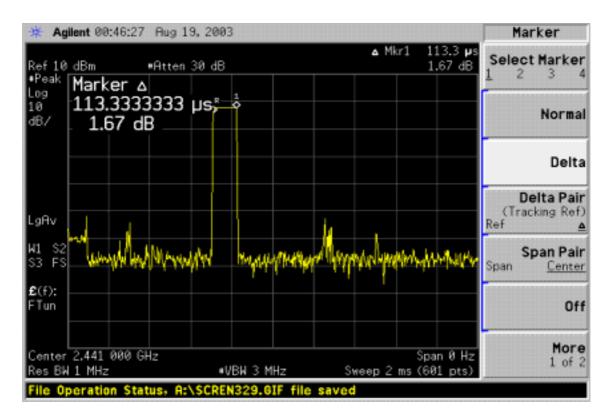
Test Data

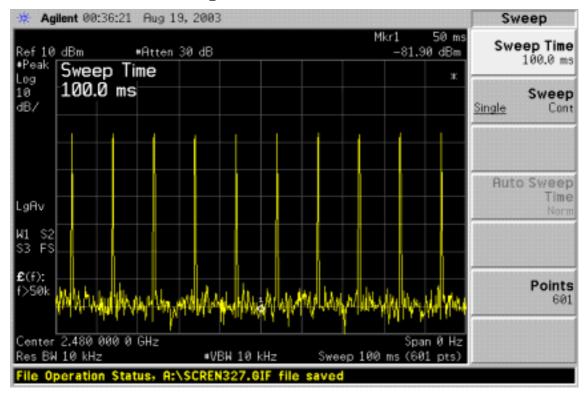

A period time = 0.4 * 79 = 31.6 (s)

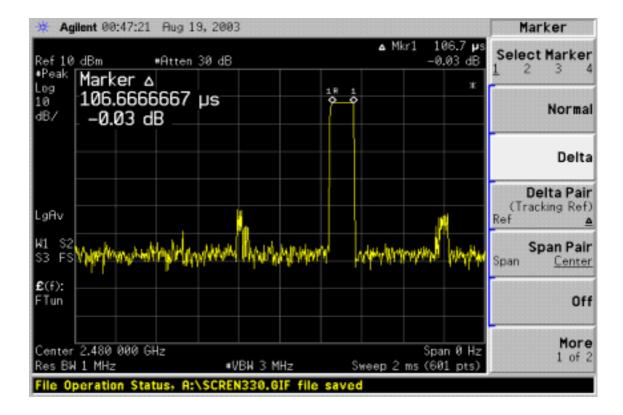

CH Low: 0.11 * 1600/79 * 31.6=70.40 (ms) CH Mid: 0.11 * 1600/79 * 31.6=70.40 (ms) CH High: 0.11 * 1600/79 * 31.6=70.40 (ms)

СН	Pulse	Total of	Period	L im it
Сп	T im e	Dwell (ms)	Time(s)	$(\mathbf{m} \mathbf{s})$
Low	0.11	70.40	31.60	400.00
M id	0.11	70.40	31.60	400.00
High	0.11	70.40	31.60	400.00


Test Plot


Dwell Time Test Data (CH-Low)




Dwell Time Test Data (CH-Mid)

Dwell Time Test Data (CH-High)

7.7 RADIO FREQUENCY RADIATION EXPOSURE

LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See §15.247(b)(4) and §1.1307(b)(1) of this chapter.

EUT Specification

EUT	Handheld
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5825GHz Others Bluetooth: 2402GHz ~ 2480GHz
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure $(S = 5mW/cm^2)$ General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	-1.00 dBm (0.794mW)
Antenna gain (Max)	-0.59 dBi (Numeric gain: 0.8729)
Evaluation applied	 MPE Evaluation* SAR Evaluation N/A (Portable device)

Note:

- 1. *The maximum output power is –1.00dBm(0.7945mW) at 2402MHz, which is lower than general population low threshold 60/F (60/2441=0.02458W), per the FCC rules 2.1093 SAR is not required.
- 2. For mobile or fixed location transmitters, the minimum separation distance is 20 cm, even if calculations indicate that the MPE distance would be less.
- 3. MPE evaluation is not applicable for the portable transmitters below the 6GHz. For the devices operating above 6GHz, evaluation should be made at a minimum distance of 5cm from the radiating source.

TEST RESULTS

Not applicable.

(EUT is categorized to Portable device and exempt from the RF exposure compliance.)

7.8 RADIATED EMISSIONS

LIMIT

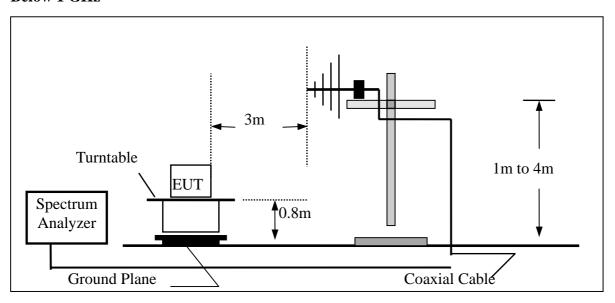
1. Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (mV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Note: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

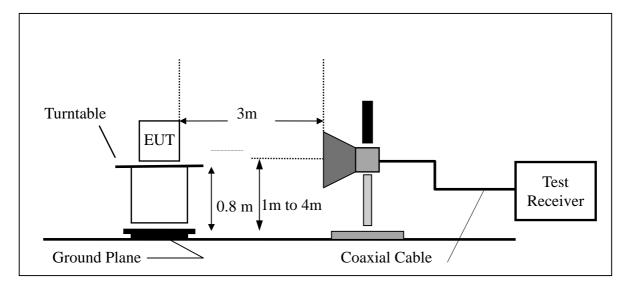
2. In the above emission table, the tighter limit applies at the band edges.

Frequency (Hz)	Field Strength (µV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54


MEASUREMENT EQUIPMENT USED

Open Area Test Site # 3							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	ADVANTEST	R3261A	N/A	03/18/2004			
EMI Test Receiver	R&S	ESVS20	838804/004	01/04/2004			
Pre-Amplifier	HP	8447D	2944A09173	03/03/2004			
Bilog Antenna	SCHWAZBECK	VULB9163 145		07/05/2004			
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R			
Antenna Tower	Antenna Tower EMCO 2075-2		9707-2060	N.C.R			
Controller	EMCO	CO 2090 9709-1256		N.C.R			
RF Switch	ANRITSU	MP59B	M53867	N.C.R			
Site NSA	C&C	N/A	N/A	09/06/2003			
Horn antenna	Schwarzbeck	BBHA 9120	D210	02/23/2004			
Loop Antenna	EMCO	6502	2356	07/10/2004			
Pre-Amplifier	HP	8449B	3008B00965	10/02/2003			

Remark: Each piece of equipment is scheduled for calibration once a year.


Test Configuration

Below 1 GHz

Report No: B30811204-RP FCC ID: REI001 Date of Issue: August 22, 2003

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Date of Issue: August 22, 2003

TEST RESULTS

Below 1 GHz

Operation Mode: Tx CH Low Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit 3m	Safe Margin
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
							_
316.80	V	Peak	17.27	17.13	34.40	46.00	-11.60
382.60	V	Peak	18.05	19.78	37.83	46.00	-8.17
493.20	V	Peak	14.82	22.19	37.01	46.00	-8.99
603.80	V	Peak	8.86	25.33	34.19	46.00	-11.81
647.20	V	Peak	9.73	24.91	34.64	46.00	-11.36
690.60	V	Peak	10.51	25.60	36.11	46.00	-9.89
316.80	Н	Peak	21.30	17.13	38.43	46.00	-7.57
339.20	Н	Peak	22.83	17.74	40.57	46.00	-5.43
361.60	Н	Peak	20.30	18.65	38.95	46.00	-7.05
382.60	Н	Peak	16.49	19.78	36.27	46.00	-9.73
645.80	Н	Peak	12.30	24.92	37.22	46.00	-8.78
690.60	Н	Peak	15.20	25.60	40.80	46.00	-5.20

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

FCC ID: REI001 Date of Issue: August 22, 2003

Operation Mode: Tx CH Mid Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq.	Ant.Pol.	Detector Mode	Reading	Factor	Actual FS	Limit 3m	Safe Margin
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
•							
296.22	V	Peak	17.42	16.53	33.95	46.00	-12.05
316.80	V	Peak	17.01	17.13	34.14	46.00	-11.86
361.60	V	Peak	16.36	18.65	35.01	46.00	-10.99
382.60	V	Peak	17.85	19.78	37.63	46.00	-8.37
493.20	V	Peak	11.65	22.19	33.84	46.00	-12.16
690.60	V	Peak	9.65	25.60	35.25	46.00	-10.75
316.80	Н	Peak	20.77	17.13	37.90	46.00	-8.10
339.20	Н	Peak	23.79	17.74	41.53	46.00	-4.47
361.60	Н	Peak	21.31	18.65	39.96	46.00	-6.04
624.80	Н	Peak	12.22	25.13	37.35	46.00	-8.65
645.80	Н	Peak	12.15	24.92	37.07	46.00	-8.93
690.60	Н	Peak	14.72	25.60	40.32	46.00	-5.68

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Date of Issue: August 22, 2003

Operation Mode: Tx CH High Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Ver. / Hor.

Freq.	eq. Ant.Pol. Detector Mode		Reading	Factor	Actual FS	Limit 3m	Safe Margin	
(MHz)	H/V	(PK/QP)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
316.80	V	Peak	17.25	17.13	34.38	46.00	-11.62	
382.60	V	Peak	17.30	19.78	37.08	46.00	-8.92	
493.20	V	Peak	11.86	22.19	34.05	46.00	-11.95	
591.20	V	Peak	9.39	25.18	34.57	46.00	-11.43	
624.80	V	Peak	11.66	25.13	36.79	46.00	-9.21	
690.60	V	Peak	10.48	25.60	36.08	46.00	-9.92	
316.80	Н	Peak	21.37	17.13	38.50	46.00	-7.50	
339.20	Н	Peak	23.15	17.74	40.89	46.00	-5.11	
361.60	Н	Peak	20.57	18.65	39.22	46.00	-6.78	
624.80	Н	Peak	12.80	25.13	37.93	46.00	-8.07	
647.20	Н	Peak	12.03	24.91	36.94	46.00	-9.06	
690.60	Н	Peak	13.59	25.60	39.19	46.00	-6.81	

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Date of Issue: August 22, 2003

Above 1 GHz

Operation Mode: Tx CH Low Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Ver.

	Peak	\mathbf{AV}		Actual FS		Peak	\mathbf{AV}		
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
4800.00	41.79		3.24	45.03		74.00	54.00	-8.97	Peak
7860.00	41.01		8.20	49.21		74.00	54.00	-4.79	Peak
7206.00						74.00	54.00		
9608.00						74.00	54.00		
12010.00						74.00	54.00		
14412.00						74.00	54.00		
16814.00						74.00	54.00		
19216.00						74.00	54.00		
21618.00						74.00	54.00		
24020.00						74.00	54.00		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Date of Issue: August 22, 2003

Operation Mode: Tx CH Low Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Hor.

	Peak	\mathbf{AV}		Actual FS		Peak	\mathbf{AV}		
Freq. (MHz)	Reading (dBuV)	Reading (dBuV)		Peak (dBuV/m)	AV (dBuV/m)	Limit (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4800.00	42.04		3.24	45.28		74.00	54.00	-8.72	Peak
7206.00						74.00	54.00		
9608.00						74.00	54.00		
12010.00						74.00	54.00		
14412.00						74.00	54.00		
16814.00						74.00	54.00		
19216.00						74.00	54.00		
21618.00						74.00	54.00		
24020.00						74.00	54.00		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

FCC ID: REI001

Date of Issue: August 22, 2003

Operation Mode: Tx CH Mid Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Ver.

	Peak	\mathbf{AV}		Actu	al FS	Peak	\mathbf{AV}		
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
4440.00	40.97		2.60	43.57		74.00	54.00	-10.43	Peak
4880.00	40.54		3.41	43.95		74.00	54.00	-10.05	Peak
6970.00	40.73		6.51	47.24		74.00	54.00	-6.76	Peak
7323.00						74.00	54.00		
9764.00						74.00	54.00		
12205.00						74.00	54.00		
14646.00						74.00	54.00		
17087.00						74.00	54.00		
19528.00						74.00	54.00		
21969.00						74.00	54.00		
24410.00						74.00	54.00		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

FCC ID: REI001

Date of Issue: August 22, 2003

Operation Mode: Tx CH Mid Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Hor.

	Peak	\mathbf{AV}		Actu	al FS	Peak	\mathbf{AV}		
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
4130.00	41.35		2.64	43.99		74.00	54.00	-10.01	Peak
4970.00	40.40		3.61	44.01		74.00	54.00	-9.99	Peak
6400.00	40.84		5.44	46.28		74.00	54.00	-7.72	Peak
7323.00						74.00	54.00		
9764.00						74.00	54.00		
12205.00						74.00	54.00		
14646.00						74.00	54.00		
17087.00						74.00	54.00		
19528.00						74.00	54.00		
21969.00						74.00	54.00		
24410.00						74.00	54.00		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

FCC ID: REI001

Date of Issue: August 22, 2003

Operation Mode: Tx CH High Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Ver.

	Peak	\mathbf{AV}		Actua	al FS	Peak	\mathbf{AV}		
Freq.	Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(MHz)	(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	
4100.00	40.63		2.65	43.28		74.00	54.00	-10.72	Peak
4960.00	40.97		3.58	44.55		74.00	54.00	-9.45	Peak
6330.00	41.47		5.39	46.86		74.00	54.00	-7.14	Peak
7440.00						74.00	54.00		
9920.00						74.00	54.00		
12400.00						74.00	54.00		
14880.00						74.00	54.00		
17360.00						74.00	54.00		
19840.00						74.00	54.00		
22320.00						74.00	54.00		
24800.00						74.00	54.00		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

Operation Mode: Tx CH High Mode **Test Date:** August 18, 2003

Temperature: 20°C **Tested by:** Robin

Humidity: 70 % RH **Polarity:** Hor.

Peak	\mathbf{AV}		Actu	al FS	Peak	\mathbf{AV}		
Reading	Reading	Ant./CL	Peak	\mathbf{AV}	Limit	Limit	Margin	Remark
(dBuV)	(dBuV)	CF(dB)	(dBuV/m)	(dBuV/m)	$\left(dBuV/m\right)$	(dBuV/m)	(dB)	
41.11		2.64	43.75		74.00	54.00	-10.25	Peak
40.38		3.58	43.96		74.00	54.00	-10.04	Peak
40.55		5.15	45.70		74.00	54.00	-8.30	Peak
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
					74.00	54.00		
	Reading (dBuV) 41.11 40.38	Reading (dBuV) Reading (dBuV) 41.11 40.38	Reading (dBuV) Reading (dBuV) Ant./CL CF(dB) 41.11 2.64 40.38 3.58	Reading (dBuV) Reading (dBuV) Ant./CL (CF(dB)) Peak (dBuV/m) 41.11 2.64 43.75 40.38 3.58 43.96 40.55 5.15 45.70 </td <td>Reading (dBuV) Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) 41.11 2.64 43.75 40.38 3.58 43.96 40.55 5.15 45.70 </td> <td>Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) 41.11 2.64 43.75 74.00 40.38 3.58 43.96 74.00 40.55 5.15 45.70 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00</td> <td>Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) Limit (dBuV/m) 41.11 2.64 43.75 74.00 54.00 40.38 3.58 43.96 74.00 54.00 40.55 5.15 45.70 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00</td> <td>Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) 41.11 2.64 43.75 74.00 54.00 -10.25 40.38 3.58 43.96 74.00 54.00 -10.04 40.55 5.15 45.70 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 <</td>	Reading (dBuV) Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) 41.11 2.64 43.75 40.38 3.58 43.96 40.55 5.15 45.70	Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) 41.11 2.64 43.75 74.00 40.38 3.58 43.96 74.00 40.55 5.15 45.70 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) Limit (dBuV/m) 41.11 2.64 43.75 74.00 54.00 40.38 3.58 43.96 74.00 54.00 40.55 5.15 45.70 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00	Reading (dBuV) Ant./CL (dBuV/m) Peak (dBuV/m) AV (dBuV/m) Limit (dBuV/m) Margin (dBuV/m) 41.11 2.64 43.75 74.00 54.00 -10.25 40.38 3.58 43.96 74.00 54.00 -10.04 40.55 5.15 45.70 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 74.00 54.00 <

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum Peak Setting 1GHz 26GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = 200 ms.
- 5. Spectrum AV Setting 1GH z- 26GHz, RBW = 1MHz, VBW = 10Hz, Sweep time = 200 ms

7.9 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBμV)				
Frequency Range (MIIIZ)	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCS30	847793/012	12/20/2003
LISN	R&S	ESH2-Z5	843285/010	12/15/2003
LISN	EMCO	3825/2	9003-1628	07/25/2004

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-1992.
- 2. The EUT was plug-in the host PC via USB port. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 110Vac/60Hz power source.

The EUT is set to transmit in a continuous mode.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

Report No: B30811204-RP FCC ID: REI001 Date of Issue: August 22, 2003

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

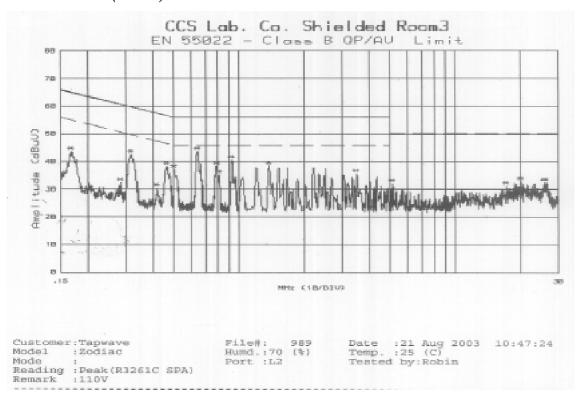
Operation Mode: Tx + Rx mode**Test Date:** August 21, 2003

25°C Robin **Temperature: Tested by:**

70% RH **Humidity:**

FREQ	Q .P .	A V G	Q.P.	A V G	Q .P .	A V G	NOTE
M II -	Raw	Raw	Limit	Limit	Margin	Margin	
MHz	d B u V	d B u V	d B u V	d B u V	d B	d B	
0.171	46.20		64.91	54.91	-18.71		L 1
0.316	44.80		59.81	49.81	-15.01		L 1
0.458	43.00		56.73	46.73	-13.73		L 1
0.501	42.20		56.00	46.00	-13.80		L 1
0.644	44.60	38.15	56.00	46.00	-11.40	-7.85	L 1
0.892	41.20		56.00	46.00	-14.80		L 1
	-	-	-	-	-	-	
0.318	42.60		59.76	49.76	-17.16		L 2
0.467	38.20		56.57	46.57	-18.37		L 2
0.645	43.60		56.00	46.00	-12.40		L 2
0.796	38.20		56.00	46.00	-17.80		L 2
0.928	40.60		56.00	46.00	-15.40		L 2
1.386	38.40		56.00	46.00	-17.60		L 2

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. $L1 = Line \ One \ (Live \ Line) / L2 = Line \ Two \ (Neutral \ Line)$


Test Data Plots

Date of Issue: August 22, 2003

Conducted emissions (Line 1)

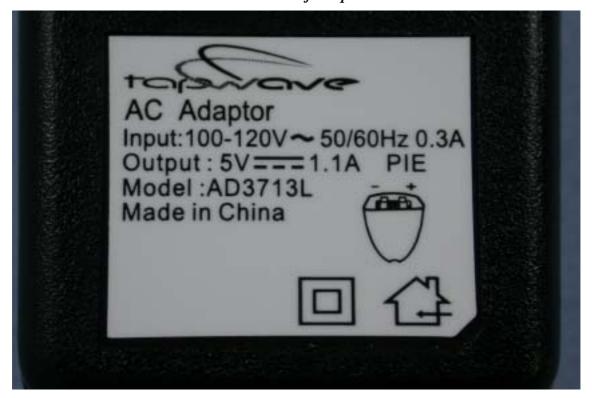
Conducted emissions (Line 2)

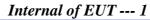
APPENDIX 1 PHOTOGRPHS OF TEST SETUP

Radiated Emission Set up Photos

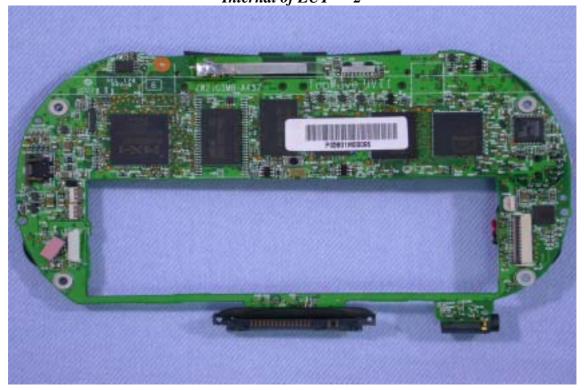
Conducted Emission Set Up Photos

APPENDIX 2 EXTERNAL PHOTOGRPHS OF EUT

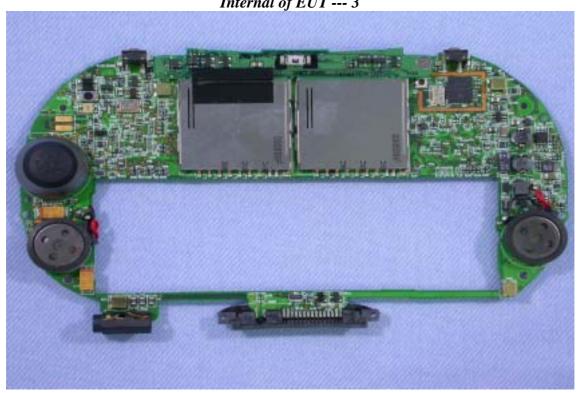

Back view of EUT


All view of EUT

Label view of Adaptor

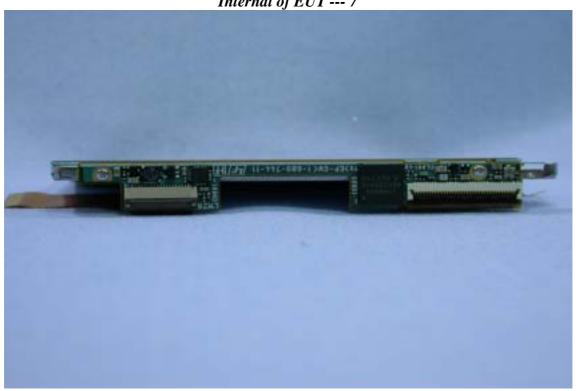


APPENDIX 3 INTERNAL PHOTOGRPHS OF EUT

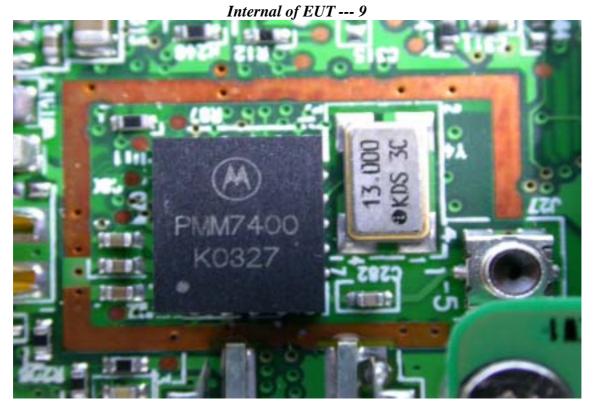


Internal of EUT --- 2


Internal of EUT --- 3


Internal of EUT --- 5

Internal of EUT --- 6


Internal of EUT --- 7

Internal of EUT --- 8

Internal of EUT --- 10

